RAMAKRISHNA MISSION VIDYAMANDIRA

(Residential Autonomous College under University of Calcutta)

THIRD YEAR

B.A./B.SC. FIFTH SEMESTER (July – December), 2012 Mid-Semester Examination, September 2012

Date : 10/09/2012

CHEMISTRY (Honours)

Time : 2 pm – 4 pm

Paper: V Full Marks: 50

[3]

[Use Separate Answer Script for each Group]

Group – A

(Attempt any one from each unit)

Unit - I 1. a) Justify or criticize the followings: $[2\times2]$ i) For a BCC lattice, the only reflections that occur are those for which the sum of the indices is ii) Ferrocene is a well known molecule with C₅ symmetry axis. But 5-fold rotation axis is absent in crystals. The μ of HBr is 0.78D and its dielectric constant at 20°C and 1atm pr. Is 1.00313. Calculate its distortion polarisability. [Given $E_0 = 8.854 \times 10^{-12} \, \text{J}^{-1} \text{c}^2 \text{m}^{-1}$]. Do you expect any change in the same, if Br is replaced by D? Explain. [4] Draw the (III) plane for FCC lattice. [1] How does one determine the dipole moment of a molecule by measuring the molar polarisation? 2. a) Explain. [3] b) Molar polarisation does not have the contribution from orientation of a molecule at higher frequency than microwave. Justify it. [2] The X-ray spectrum of a cubic metal using radiation of $\lambda = 1.5418$ A gives lines at the following values of θ : 21.8 25.437.2 45.4i) Index the lines i.e. determine the hkl values of the planes. ii) Calculate the edge length. iii) Identify the unit cell. [4] Unit - II Differentiate between a classical and a quantum mechanical harmonic oscillators. [2] The wave function of a harmonic oscillator at its lowest energy state is given by $\psi_0(x) = A.e^{-dx^2/2}$. Find out A. [2] c) Show that $\langle x^2 \rangle = \frac{\hbar \left(n + \frac{1}{2} \right)}{(nk)^{\frac{1}{2}}}$ for a harmonic oscillator. [4] 'Zero point energy of a quantum mechanical harmonic oscillator can not be zero'. —Explain. [2] 4. The wave function $\psi_1(x)$ of a harmonic oscillator is given by $\psi_1(x) = \left(\frac{4d^3}{\pi}\right)^{\frac{1}{4}} xe^{-\alpha x^2/2}$, where $\alpha = \frac{\sqrt{\mu k}}{\hbar}$. Show that the expression for the corresponding energy is given by $E_1 = \frac{3}{2}h\nu$, where ν is

the oscillating frequency.

c) The fundamental vibrational frequency of H_2 is 4.33×10^3 cm⁻¹ and to is 74 pm. Calculate the rms displacement in the n = 0 state and compare it with the equilibrium bond length l_0 .

Unit - III

- 5. a) Derive the relationship between the elevation of boiling point of the solvent with the molality of the solute, the later being nonvolatile and nonelectrolyte. [4]

[3]

[3]

[1]

- b) Consider the following equilibrium:
 - $AlCl_3+3H_2O = Al(OH)_3 + 3HCl$
 - Write down the number of components, phases and degrees of freedom in the system (Use your knowledge of general chemistry!) along with proper explanations.
- c) Calculate the highest number of phases that can coexist in a two component system. [1]
- 6. a) Show from thermodynamic consideration that the osmotic pressure of a solution is proportional to the concentration of the solution and its temperature. [4]
 - b) A solution containing $4 \cdot 13$ gm LiCl per litre freezes at -0.343 C. Calculate van't Hoff factor and the degree of dissociation.
 - c) Explain why the degrees of freedom at upper critical solution temperature in phenol-water system is zero (when pressure is constant).

Group - B

(Attempt any one from each unit)

Unit - I

7. Predict product with stereochemistry & possible orbital interaction at transition state :

a)
$$h\gamma \rightarrow ?$$

b)
$$\langle \rangle \longrightarrow \langle \rangle \xrightarrow{h\gamma} ?$$

8. Predict product with stereochemistry & possible orbital interaction at transition state:

a)
$$\underbrace{\frac{1) \text{ h}\gamma}{2) \text{ heat}}} ?$$
 [3]

b)
$$\xrightarrow{\text{heat}}$$
?

Unit - II

9. Give retrosynthetic analysis and an efficient synthesis of each of the following compounds; $[3\times2]$

10. Carry out the following conversions. Mechanism is not necessary.

$$a) \qquad \bigcap_{Q} H \longrightarrow \bigcap_{R} \bigcap_{Q} D$$

c) EAA
$$\longrightarrow$$
 OEt

<u>Unit - III</u>

11. a) Carry out the following conversion.

- b) How would you prepare β -naphthol from naphthalene? What happens when β -naphthol is treated with nitrous acid?
- c) Predict the products(s) of the following reaction and give mechanism.

 $[1\frac{1}{2}]$

 $[1\frac{1}{2}]$

 $[1\frac{1}{2}]$

[2]

 $[3\times2]$

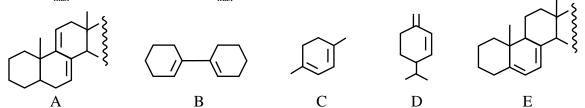
$$\begin{array}{ccc}
\text{SiMe}_3 & & 1) \text{ PhCHO, TiCl}_4 \\
\hline
& 2) \text{ H}_3\text{O}^+
\end{array}$$

d) Give product(s) and explain the stereochemical course of the following reaction.

threo -
$$C_3H_7$$
 - CH - CH - C_3H_7 - KF/THF OH SiMe₃ [1½]

- 12. a) What happens when β-naphthol is heated with ammonia in the presence of aqueous sodium bisulphite solution. Give mechanism of the reaction. [2]
 - b) How would you distinguish chemically between anthraquinone and phenanthraquinone? Give the reaction. [1]
 - c) Write the product(s) of the following reaction and explain the regioselectivity of the process. [1]

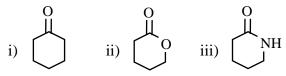
Phenanthrene
$$\xrightarrow{\text{CHCl}_3}$$
 $\xrightarrow{\text{t-BuOK}}$


d) Carry out the following conversion:

$$R-C \equiv C-H \longrightarrow R C = C < SiMe_3$$

e) Predict the product(s) of the following reaction and give plausible mechanism.

SiMe₃ i)
$$C_1$$
, AlCl₃, CH₂Cl₂, -60° ii) H_2O , NH₄Cl


The following dienes have λ_{max} at 231 nm (ϵ_{max} 21000), 236nm (ϵ_{max} 12000), 245nm (ϵ_{max} 18000), 265nm (ϵ_{max} 64000), and 282nm (ϵ_{max} 11900) in ethanol. Which is which? [5]

- What is 'end absorption' in UV spectroscopy?
- [1]
- Which will occur at a larger wavenumber? 14. a)
 - i) the C N stretch of an amine or the C N stretch of an amide
 - ii) the C –O stretch of phenol or the C O stretch of cyclohexanol
 - iii) the stretch or the bend of the C O bond in ethanol
 - List the following compounds in order of decreasing wavenumber of the C = O absorption band.

[3]

[3]

多衆の